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The stability of fully developed pipe-Poiseuille flow to finite-amplitude axisymmetric 
and non-axisymmetric disturbances has been studied using the equilibrium-amplitude 
method of Reynolds & Potter (1967). In both the cases the least-stable centre-modes 
were investigated. Also, for the non-axisymmetric case the mode investigated was 
the one with azimuthal wavenumber equal to one. Many higher-order Landau 
coefficients were calculated, and the Stuart-Landau series was analysed by the 
Shanks (1955) method and by using Pad6 approximants to look for the existence of 
possible equilibrium states. The results show in both cases that, for each value of the 
Reynolds number R, there is a preferred band of spatial wavenumbers a in which 
equilibrium states are likely to exist. Moreover, in both cases it was found that the 
magnitude of the minimum threshold amplitude for a given R decreases with 
increasing R. The scales of the various quantities obtained agree very well with those 
deduced by Davey & Nguyen (1971). 

1. Introduction 
The study of the stability of fully-developed pipe-Poiseuille flow to finite-amplitude 

disturbances is important as this is likely to shed some light on the mechanism of 
breakdown of the orderly laminar flow. As regards infinitesimal disturbances, it is 
well known from past theoretical studies (e.g. Davey & Drazin 1969; Salwen & Grosch 
1972; Garg & Rouleau 1972) that pipe-Poiseuille flow is stable to all modes of 
infinitesimal disturbances, whether axisymmetric or non-axisymmetric, for all points 
in the (a, R)-plane. There is also some experimental corroboration of these theoretical 
results, notably from the works of Leite (1959), Fox, Lessen & Bhat (1968) and 
Sarpkaya (1975). Consideration of these facts makes the study of finite-amplitude 
disturbances in pipe-Poiseuille flow all the more important. 

It is now well known from the earlier theoretical work on the linear problem that, 
both for axisymmetric and non-axisymmetric disturbances, the least-stable mode is 
a centre-mode. Also, the least-stable centre-mode for non-axisymmetric disturbances, 
with azimuthal wavenumber equal to one, is even less stable than the least-stable 
axisymmetric centre-mode. It is therefore natural to believe that, if finite-amplitude 
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destabilization is to  be expected, then this is most likely to  occur for the cases of the 
least-stable centre-mode in both the axisymmetric and the non-axisymmetric cases. 
Thus, in the present work, the nonlinear problems corresponding to these two cases 
are investigated. The method of investigation used is the equilibrium-amplitude 
method of Reynolds & Potter (1967 ; hereinafter referred to as RP).  

Some experiments have also been reported in the past on finite-amplitude effects 
in pipe-Poiseuille flow, especially in the earlier quoted references on experimental 
work. Unfortunately, all these results are for cases corresponding to wall modes. For 
example, the work of Fox et a,?. (1968) does consider finite-amplitude non-axisymmetric 
disturbances with azimuthal wavenumber one, but the disturbances correspond to 
phase speeds c, x 0.5. Thus these experimental results do not shed any light on the 
behaviour of finite-amplitude disturbances for the least-stable centre-modes. It will 
be useful if such experimental results, with which the theoretical results could be 
compared, were to become available in future. 

Regarding the theoretical works on nonlinear disturbances in pipe-Poiseuille flow, 
it seems that no earlier work, a t  least not any based on the Stuart (1960)-Watson 
(1960) formalism, exists for non-axisymmetric disturbances. As regards axisymmetric 
disturbances, there are two important earlier works. The first, due to Davey & Nguyen 
(1971), employs the R P  method. In  this work the first Landau coefficient was 
calculated for the least-stable centre-mode and for the least-stable wall-mode (which 
is more stable than the centre-mode). The sign of the Landau coefficient indicated 
possible destabilization of the flow due to finite-amplitude effects. I n  the second work, 
due to Itoh (1977a,b), again the first Landau coefficient was Calculated based on an 
independent formulation developed by Itoh. However, the sign of the coefficient 
calculated by Itoh indicated further stabilization of the flow with finite-amplitude 
disturbances, for the least-stable centre-mode. Later, Davey (1978) attempted to 
explain this discrepancy. Davey also calculated the first Landau coefficient for the 
least-stable wall-mode, both by Itoh’s theory and by the R P  method. But these were 
found to  be in qualitative agreement with each other, in contrast with the case of 
the least-stable centre-mode. 

The motivation for the present work is therefore to  make a detailed study of the 
problem of nonlinear stability of pipe-Poiseuille flow, so as to  be able to  arrive a t  a 
more convincing set of conclusions. A similar detailed work on plane-Poiseuille flow 
has been reported by Sen & Venkateswarlu (1983, hereinafter referred to  as I) .  

2. Formulation 
The formulation of the problem is considered with respect to the cylindrical polar 

form of the incompressible Navier-Stokes and continuity equations, with r ,  g5 and 
x the radial, azimuthal and axial coordinates respectively, and with v, w and u the 
velocity components in the r - ,  g5- and x-directions respectively. All distances are 
normalized with respect to  the pipe radius, and all velocities are normalized with 
respect to the centreline velocity of the undistorted laminar flow. The formulation 
is given separately for the axisymmetric and non-axisymmetric cases. 

2.1. Axisymmetric m5e 

In  the axisymmetric case the problem is mathematically two-dimensional, and a 
stream function $ can be introduced as follows: 
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Further, after eliminating the pressure terms between the r- and x-components of the 
Navier-Stokes equations, one obtains the following equation in terms of $: 

where 

and R is the Reynolds number. 

and a perturbation consisting of a Fourier series of travelling waves, as follows : 
In order to model the disturbances, $ is assumed as composed of a mean part do(r ,  t )  

m 

$(x, r,  t )  = #o(r ,  t )  + X #,(r,  t )  einu(z-crt), (3) 
n--m 
n+O 

where c, is the phase speed according to linear theory and a is the x-wise spatial 
wavenumber. Also, for negative values of n, #-, = J,, where a tilde C) denotes the 
complex conjugate. 

Further, as in I, the following expansions and conditions (a)-(e) are introduced. 
(a )  Mean motion : 

where U(r )  is the undistorted laminar velocity, O(r, t )  is the distorted mean velocity, 
and fz are the mean-motion distortion functions. Also, A = A( t )  is the (complex) 
amplitude ascribed to the fundamental disturbance. 

( b )  The Stuart-Landau equation : 
00 dA 

- = ac, A + i a A  X K ,  I A 1211, 
dt n-1 

where K, are the Landau coefficients, c = c,  + ic, is the complex phase speed according 
to linear theory, and subscript i in K,, denotes the imaginary part of K,. Also, S 
represents the sum to infinity (correct sum) of the Stuart-Landau series in the form 
given in (7). 

( c )  The harmonic distortion functions: 
m 

where $no will be referred to as $,, and $l is the fundamental eigenfunction according 
to linear theory. 

( d )  The equilibrium amplitude assumption of RP: 

-- - 0. d l A I 2  
dt (9) 

If this assumption is not made, then the mean-motion equation will be subject to 
singularities (see Davey & Nguyen 1971). 
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( e )  It is assumed that the laminar pressure gradient dp/& = - 4 / R  remains unaltered 

Substituting (3)-(9) in (2), and after some algebra, one obtains the differential 
in the presence of disturbances. 

equations corresponding to any f& and any Pnm respectively as follows: 

(p+d) C m 

' p-1 d-0 

+P!Jpd Mn*+p $n+p, m-p-d-p$/:+p, m-p-d M p  J p d  

- ( n + p ) $ n + p , m - p - d - M ~ J p ~ ] ,  n = 1,2,3, ..., m = 0,1,2,3, ..., (11) 

where primes ( f )  denote differentiation with respect to r .  The different operators in 
(10) and (1 1) are 

I n2a2, 
d2 1 d 

n -  dr2 r dr 
M 

M n  = Mn-niaR(1-r2-c) ,  

Ln = M n M n .  

The boundary conditions for (10) and (1 1) are respectively 

$nm = 0, $hm = 0 at r = 0, I. (14) 

It is also known from Davey & Nguyen (1971) that fk and $,, behave as even 
functions of r ,  near and at the centreline of the pipe. 

Further, .following Davey & Nguyen, the eigenfunction is normalized a t  the 
centreline such that $; = 2 a t  r = 0. 

Again following Davey & Nguyen, the differential equation for the adjoint 
eigenfunction 8 and the boundary conditions are 

L10 = M I M , B  = 0,  (154 

B = 6 = 0  a t r = O , l .  (15b) 

L, = iaRK, M ,  ' J f l  + qn. (16) 

The equation for any $ln function may be written in the following form from (1 1) : 
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Thus, by using the solvability condition for the equation for $,,, i.e. (16), the Landau 
coefficient K, may be determined as follows: 

- OT,, dr 
K ,  = s.' : 

iaR Jol :OM, $1 dr * 

Finally, it  can also be seen from (lfi), that a normalization has to be specified for the 
@,, functions. Similarly, for reasons described in I, the normalization adopted here 
is to exclude the el content in the functions. This can be achieved by keeping 
$:n = 0 at r = 0, in addition to the boundary conditions given by (14). 

2.2. Non-axisymmetric case 
For the non-axisymmetric case, with the fundamental disturbance having azimuthal 
wavenumber one, the expressions for u, v, w and the pressure P are 

u = u*+ O(r , t ) ,  v = v*, w = w*, P = P * + F ( ~ ) ,  

n+O I 
where an asterisk (*) indicates fluctuating parts. Also o ( r , t )  is the distorted mean 
velocity, F(x) is the (undistorted) mean pressure, c,  is the phase speed according to 
linear theory, a is the x-wise spatial wavenumber and n represents the order of the 
harmonic level. Further, n = 1 denotes the fundamental, and F,, G,, H, and P, 
represent complex amplitude functions for the nth harmonic level. Also, negative 
values of n indicate the complex conjugate, i.e. F-, = p,, where a tilde C) denotes 
the complex conjugate. 

Similarly to the axisymmetric case, the distorted mean velocity o ( r , t ) ,  the 
undistorted laminar mean velocity U(r)  and the mean-motion distortion functions 
F(r, t )  are given by (4) and ( 5 )  for the present case. 

Substituting (18) and (4) into the three components of the Navier-Stokes equations 
and the continuity equation and separating at various harmonic levels, one obtains 
the following set of equations respectively for the three components F,, G, and H,, 
the mean-motion distortion F and the continuity equation : 

R 
P = - Z 00 [ ( n - p ) a F P F , - p + - G p F ' , _ , + ~ H p F n - P ] ,  (19) 

p--a,  1P1 
P*O 

luT n2 + '> G, -7 2n H,] n8ae+- 
r2 

=- [-aFpG'n-p+-- n - p  G G' + s { p G n - p + H n - . p } ] ,  (20) 
p--CC IplIn-Pl n-p  r n-PI 
P*O 
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n n G, H 
naF,+-GC:,+--+nA= 0. 

In1 In1 r r 

We note a t  this stage that identical expressions and conditions (u)-(e)) with the 
exception of (c), as given for the axisymmetric case in $2.1, are introduced here as 
well. I n  place of (c), the following expansions are introduced for the harmonic 
distortion functions : 

W 

[Fp(r, t ) ?  Gpb-3  4 ,  Hpb.9 t ) I  = c Vp,(rL gpq(r)r hpqWI I AI2*> (24) 
P - 0  

with an analogous expression for the complex conjugate. Further, as before, 
expressions like f p o  (i.e. for p = 0) corresponding to the principal component at the 
pth harmonic level, will be referred to as f p .  

The derivation, from (19) to (23) onwards, is proceeded with as follows. The 
fluctuating pressure terms P, are eliminated between (19), (20) and (21) by cross- 
differentiation. The H ,  function is eliminated on the left-hand sides (i.e. for the linear 
terms) by the use of the continuity equation in the form of (23). The equations and 
expansions given by (4)-(7), (9) and (24) are substituted. It may be noted also that 
if the equilibrium-amplitude assumption of RP (see (9)) is not made beforehand, then 
i t  can be seen from (22) that  similarly to  the axisymmetric case, in the present case 
also the mean-motion equation will be subject to  singularities for ci < 0. Thus 
Watson’s (1960) method would not be appropriate for either the axisymmetric or the 
non-axisymmetric problem. 

After some heavy algebra, with the substitutions made as mentioned earlier, one 
obtains the continuity equation in terms of grim, f , ,  and h,,, the equation for the 
mean-motion distortion function f k ,  and a pair of coupled equations, to be called the 
master equations, for gnm and f,, : 

L,(na)g,,+L,(na) f,, = NgL,  m = 0 , 1 , 2 ,  ..., 

L,(na)g,,+L,(na)f,,=N~~, n =  1 , 2 , 3  ,...; m = 0 , 1 , 2  ,..., 

n = 1 ,2 ,3 ,  ... ; 

where N g L  and NgL are the nonlinear forcing terms. 
Details of the left-hand sides of (27) and (28) are as follows (the expressions for 

NgA and NFL are very lengthy and are omitted here - interested readers may obtain 
copies of these on request, either from the authors or from the Editor) : 
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Ll(na) gnm + L 2 ( m ) f n m  

+ inaR( U -  c )  gi, - E+ { 122 a2 +- n2-5 11 = g:, +--gz, 6 r2 

11 1 2n2+1 -[;{--+ r2 
3n2 a2 + 3inaR( U - c )  + iwRrU' 96, 

inaR U' 
r ] gnm (n2 - 1) -~ 

+ inaR( U -  c) f 6, n2-3 + naf;, +r f ; ,  -nu n2 a2 +- 
-e r [ 2 n ( a t + $ ) + i a ~ { 2 ( ~ - c ) +  u r >  1 f n m  

1 [ r2 
5na 

+ inaR( U-c) g;, 1 n2- 1 
= ar2gz, + l iargi, - ar2 

n2- 1 
- [ar jn2 a2- - 

r2 

= NgL. (28') 

An important case obtainable from the master equations (27) and (28) is the case 
corresponding to  the fundamental disturbance, which has n = 1 and m = 0, and for 
which case the right-hand-side terms NF) and NP) are identically zero. Thus one 
obtains the equations for the fundamental disturbance mode, corresponding to  the 
linear eigenvalue problem, in the following form : 

The solution procedure, for given n and m, is to solve for gnm and f n ,  from (27) 
and (28) and thereafter to obtain h,, from the continuity equation (25). Also, f& is 
obtained by solving (26). As regards the K ,  coefficients, the solution procedure will 
be described subsequently. 

Next we consider the boundary conditions. The boundary conditions for a similar 
problem (on axisymmetric jets) were first proposed by Batchelor & Gill (1962), and 
the boundary conditions for the linear problems of disturbances in pipe flow were 
given by Salwen & Grosch (1972) and Garg & Rouleau (1972). At the wall, r = 1, the 
boundary conditions are given by the no-slip condition. This gives 

g n m = O ,  f,, = 0 ,  h,, = 0 ,  f & = O  a t r =  1. (31) 

g;, = O  a t r =  I .  (32) 

Further, from the continuity equation (25) i t  is seen that the following condition is 
also valid for g n m  : 

At the centreline of the pipe, r = 0, the boundary conditions may formally be given 
for grim, depending on whether gnm is odd or even with respect to  r .  Here the term 
'odd' implies that  the function itself and its even-order derivatives are zero for r+O, 
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and the term ‘even’ implies that the odd-order derivatives of the function are zero 
for T+O.  It is known from past work (cf. Salwen & Grosch 1972; Garg & Rouleau 
1972) that the eigensolution for the fundamental, corresponding to the least-stable 
mode, has g1 as an even function with respect to r ,  with g1 non-zero at  r = 0. Thus 
the set of functions subsequently obtained has the following character, as may be 
deduced from (25), (27) and (28). First, for given n and m, if gnm is even with respect 
to r then h,, is also even and f,, is odd. Also, if g, ,  is odd then h,, is odd and 
f,, is even. Secondly, for odd values of the integer n, the gnm functions are even, 
and, for even values of n, gnm are odd. Further, it may also be deduced from (26) that 
f& is even for all integer values of m. The formal boundary conditions at r = 0, for 
(26)-(28), are therefore 

f $ = O  a t r = O ,  

g , , - g : , = O ,  ’ -  f , , = f ~ , = O  a t r = O ,  f o r n = 1 , 3 , 5  ,..., ) (33) 

Snm = Snm ” = O ;  fk,=f;,=O a t r = O ,  forn=2 ,4 ,6  ,.... 
As far as the numerical solution is concerned, it seems that some additional 

information is necessary in view of the fact that the differential equations (25)-(28) 
portray singularities at r = 0. Thus the specific forms of grim, fnm, h,, and fh need 
to be known for r+O, in order to avoid singularities in the numerical work. With 
reference to (19)-(21), it is seen that generally speaking the g n m ,  f,, and h,, functions 
should behave as r p ,  with p 2 2 for r+O, if singularities at  r = 0 are to be avoided. 
There are, however, important exceptions to this rule, which may be deduced from 
(25), (27) and (28). The forms corresponding to even gnm are thus 

I 7.3 
3! f,, = fFLr+f?g-+ ..., n = 1,3,5,  ...; m = 0,1,2,3,  ..., 

where superscript (0) refers to values at r = 0. In (34) the following additional features 
are also valid. First, for n 2 3, gg& = 0, hr& = 0 and fiz = 0. Secondly, it may be 
seen from (25) that, for the specific cases of n = 1 and n = 3, the following conditions 
are also respectively valid : 

(354  
m = 0 , 1 , 2 , 3  ,.... 1 (35b) 

+ hi% = 0, 

(0)ff+h(O)” = 0. 
Sam 3m 

The forms corresponding to odd gnm are 

r3 
3!  

gnm = q g g r + g g g - +  +.., 

r3 

nm 3! 
h,, = h$‘:r+h(O)”’-+ ..., 

r2 r 4  

nm 4! 
f,, = Jgg %+ f ( O ) i ”  -+ . . . , 

n = 2 , 4 , 6  ,...; m = 0 , 1 , 2 , 3  ,....I 
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In (36) the following additional features are also valid. First, for n 2 4, g$'L = 0 and 
h$'L = 0. Secondly,f$'& = 0 for all n. Thirdly, it  may be seen from (25) that, for the 
specific case of n = 2, the following condition is also valid: 

S2m (O)'+h(O)' 2m = 0, m = 0,1 ,2 ,3 ,  .... (37) 

Further, it  may be deduced from the right-hand side of (26) that the mean-motion 
distortion functions fk are even for all values of m. Thus the form for f& at r+O is 
the same as that for gnm with n = 1 in (34). 

Thus (34)-(37) give further insight into the nature of the various functions for r+O. 
This helps not only in avoiding singularities in the numerical work but also in 
preadjusting the numerical work for better accuracy in the results. A specific set of 
examples, from the viewpoint of facility in numerical work, is discussed next. In 
the numerical work it is necessary to consider the differential equations (26)-(28) in 
their limiting forms at r = 0. In  (26) this was found necessary for all orders in m, 
whereas, in (27) and (28) this was found necessary for the specific cases of n = 1 with 
m = 0,1,2,3,  . . .. For n > 1 it was not necessary to consider the point at r = 0 in (27) 
and (28) in the numerical work, since the functions gnm and fnm are known to be zero 
at r = 0 (see (34) and (36)). The limiting form for (26) at T = 0 is 

2f0,"=Q a t r = O ,  m = 1 , 2 , 3  ,..., (38) 

where Q represents the limit of the right-hand-side terms in (26) at r = 0. Similarly 
the limiting forms of (27) and (28) at T = 0, for the specific case of n = 1 and m = 0 
(i.e. for (29) and (30)), are respectively 

8 g ~ - 4 4 [ a 2 + i a R ( 1 - c ) ] g ~ + 2 i a R g l + ~ a f ~ - 3 ~ [ a 2 + i a R - ( l - c ) ] f ~  = 0 at r = 0, (39) 

4ag;-[[a3+ia2R(l-c)-2iR]g,+?$~+[a2-iaR(1-c)] f i  = 0 at  r = 0. (40) 

The matter of considering the limits at  r = 0 has to be taken into account in the 
right-hand sides of (26)-(28) as well. Fortunately, since the right-hand sides are 
known functions, having been calculated at earlier stages, the limits may be worked 
out either analytically or may be generated in the computer itself by a finite-difference 
technique. Computations up to K3 were made using both these procedures for 
cross-checking the numerical work. For higher orders in K ,  the limits were generated 
in the computer. 

Next, the formal solutions for the K ,  coefficients have to be developed. This 
requires defining an adjoint system to the system of equations for the fundamental, 
i.e. (29) and (30). The adjoint functions are called q5 and $, and the adjoint equations 

L:(a) 9 + L:(a) 9 = 0, (41) 
are 

L:(a)q5+L$@W = 0, (42) 

where L:(a), L:(a), L:(a) and L$(a) are respectively the operators adjoint to Ll(a), 
L3(a),  L2(a) and L,(a) as given in (29) and (30). The expanded forms of (41) and (42) 
are 

(41' 

1 + [ --- ,.a r2 {a2 + iaR( U -  c ) )  -4iaR 9 - ar2$"' - 2aRV + a[r2{a2 + iaR( U -  c)} + 21 +' 45 3 

+ [aR{a2 + iaR( U -  c)} - 2iRa2r3 + 2irRI $ = 0, 
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$ 1 
+ ( a 2 r 2 + 1 ) v +  +iaR(U-c)(1+a2r2) $ = O .  (42’) 1 
The boundary conditions for the adjoint system are determined at  the wall, r = 1, 

by considering the vanishing of the bilinear concomitant. This gives the following 
conditions a t  the wall : 

$ = $ ’ = O ,  $ = O  a t r = l .  (43) 

A t  the centreline, r = 0, again the boundary conditions for $ and t,b are given by 
the vanishing of singularities a t  r = 0. It is seen from (41’) and (42’) that $ is an odd 
function and $ is an even function with respect to r ,  for r+O.  Thus the boundary 
conditions at r = 0 are 

$ = $ I = ( ) ,  $.‘=v=O a t r = O .  (44) 

Further, the limiting form for q5 and $ for r+O may be deduced from (41’) and 
(42’) : 

Note in (45) that $(O) = 0, although $ is even with respect to r .  
The system of equations for the fundamental as well as for the adjoint constitute 

eigenvalue problems for the same set of eigenvalues a, R and c. It is seen from (29) 
and (30), and also from (41) and (42), that a normalization has to be specified for 
the respective solutions for each of these two sets of equations. For the respective 
systems the normalizations adopted were g1 = 1 at r = 0 and $’ = 1 at r = 0. 

To proceed with the determination of K,, it is seen from (27’) and (28’) that the 
equations for any pair of glm and f,, for m 2 1 are 

(46) 

(47) 

where NPA and NPA have each been split into two parts; one containing K ,  and the 
other not containing K,. The Landau coefficients K, may be determined from the 
orthogonality condition of the right-hand side of the system of equations (46) and 
(47), and this is actually the solvability condition. Upon taking the inner product 
of (4, $) with the right-hand-side term (K, P,-Q, ,  Km C-Q2) ,  one obtains the 
following conditions : 

Li(a) 91, +L,(a)flm = NYi = K m P 1 -Q  1, 

La(a) gim +La(a)fim = K‘% = Km P , - Q 2 ,  

r i  ri  

or (49) 
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Thus the Landau coefficient K ,  may be determined from (49) at the stage of solution 
of the g l m  function. Again, it is seen from (46) and (47) that a normalization has to 
be specified for the solution of this set of equations as well. Similarly to I to 52.1 here 
for the axisymmetric case, the normalization adopted was to exclude the g1 content 
in the glm functions; and incidentally this automatically excludes the fi content in 
the flm functions and the h, content in the h,, functions. It can be shown, as in I, 
that this is achieved by specifying glm = 0 at r = 0. 

3. Numerical methods 
The numerical method used for solving the various differential equations is very 

similar to that described in I, that is by using an extended form of Thomas’s (1953) 
method. However, owing to the presence of third derivative terms in the various 
differential equations of the present problem, a seven-point finite-difference scheme 
had to be used. Also, the following auxiliary function g was found to improve the 
accuracy considerably : 

g = $-&h2$”+_ZLh4flv-&h6 1200 8000 Pi> (50a) 

$ = g+&62g+&64g+O(h8),  (50b) 

where g5 represents the actual function, 6 is the central-difference operator and h is 
the step size. With the use of g as in (50a,b) the error in the derivatives is kept to 
O(h6).  Nevertheless, Thomas’s original auxiliary function can also be used in 
conjunctionwithaseven-point scheme witherrors0(h4). The accuracy ofcomputations 
was checked by using (50a, b )  as well as by using Thomas’s original auxiliary function. 

The numerical work for the axisymmetric case was cross-checked with Davey & 
Nguyen’s (1971) results for the first Landau coefficient. The details are given in table 
3. Also, the results for K ,  were obtained by the adjoint method (see (17)) and 
cross-checked by the matrix method described in I. The right-hand-side terms in (10) 
and (11)  were generated in the computer as described in I, and the calculations up 
to K ,  were cross-checked by working out the right-hand-side expressions by hand and 
then feeding these expressions into the computer. 

For the non-axisymmetric case, auxiliary functions A and ,u were defined respect- 
ively for grim and f,,. Upon discretizing (27) and (28) by finite differences, the 
following system of algebraic equations are obtained : 

(51 ) 

(52) 

where [A{f’)] are the respective matrix equivalents of the operators LJna), 
p = 1,2,3,4,  [%‘)I and [pa2)]  are respectively the discretized right-hand-side 
forcing terms NFL and NgL, and N is the number of steps used in the finite-difference 
procedure. Also, i, j represent the station positions along r .  Each of the [Ajj”,] is a 
heptadiagonal band matrix of size ( N +  1 )  x ( N +  1) .  If (51) and (52) are to be solved 
simultaneously, then a rearrangement of these equations helps. It is easy to see that, 
for any ith location, if A, terms and ,u, terms are written alternately, then (51) and 
(52) reduce to a single matrix equation in the form 

(53) 

where [ A I J ]  is a fifteen-diagonal band matrix of size (2N+2) x (2N+2) consisting of 
all the four [Ai f ) ]  but with the elements rearranged. Also, [rJ] is the combined [A,] ,  

[Aij ) ]  [A,]+ [ A p ]  &,I = [Pp], i , j  = 1,2,3,  . .., N +  I ,  

[A$)] [A,] + [A{:)] &,I = [q2’], i , j  = 1,2,3,  . . . , N +  1, 

[A,,] [r,] = [PI], I ,  J = 1,2,3,  ..., 2N+2, 
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&,I vector, with Aj and pj appearing as alternate elements. Similarly [PI] is the 
combined [4l)], [ p a 2 ) ]  vector with ql) and qZ) appearing as alternate elements. 
Further, the correspondence between I ,  J and i, j is as follows. Any given i (or j) 
corresponds to a physical station in r ,  defined as r = (i- 1) h, where h is the step size. 
For a given i, I will have two values, viz I = 2i -  1 and I = 2i. Finally, we mention, 
that  with the matrix equations given as in (53) with [A,,] in banded form, the storage 
space is very considerably reduced, and the Gaussian-elimination procedure is very 
much simplified. 

The solution of the matrix equation (53) is similar to that described in I .  We only 
mention here that, as in I the K ,  coefficients for the present problem were also 
determined by two methods, viz by the adjoint method (see (49)) and by the matrix 
method. Also, the right-hand-side terms in (26) and the terms N t A  and ","I, in (27) 
and (28) were generated in the computer as in I. Again, as in I, calculations up to  
K3 were checked out by working out the algebra of N t A  and NgL by hand and then 
feeding these expressions into the computer. 

It may be seen from (27) and (28) that  the volume of algebra involved in the 
non-axisymmetric case is considerably greater than in I or than in the axisymmetric 
case. For instance a t  the K3 level itself, the full expression for N$\) contains over 170 
terms. 

The calculations were performed in an ICL 2960 computer in the Indian Institute 
of Technology, Delhi, using double-precision arithmetic. 

4. Results and discussions 
4.1. Broad nature of the K,, coeficients 

The analysis of the results begins with the inspection of the K,, coefficients obtained. 
Typical values of the K,, coefficients are given for the axisymmetric and non- 
axisymmetric cases respectively in tables 1 and 2. DombSykes plots for the two cases 
are given respectively in figures 1 and 2. At first glance the plots appear rather 
irregular. However, the plot for the axisymmetric case depicts a periodicity of four 
and that for the non-axisymmetric case a periodicity of two. Plots of I Kni/K(n-a)i It 
and 1 Kni/K(n-2)i  12, also shown respectively in figures 1 and 2, confirm these. Figures 
1 and 2 both seem to show that the nearest singularity in both cases is a simple pole. 
The periodicity of four in the plot for the axisymmetric case is suggestive of a 
complex-conjugate secondary singularity close to the circle of convergence. For the 
non-axisymmetric case the periodicity of two is suggestive of a secondary singularity 
in the form of a simple pole close to  the circle of convergence either on the negative 
real axis or close to the primary singularity. The proximity of secondary singularities 
to  the circle of convergence, in both cases, creates situations that would make a ready 
estimation of equilibrium amplitude (i.e. the zero-crossing of the series (7)) rather 
difficult, especially if the zero-crossing occurs close to  the nearest singularity. It is 
believed that one possible reason for the irregularity of the K,, coefficients is that 
the forced solutions for the harmonics are rather ill-conditioned, since the values of 
nol and c used at the nth-harmonic level are close to  the eigenvalues for the free 
solution a t  that level. 

Further examination of the Kni coefficients, for different values of a a t  a given R, 
shows that both in the axisymmetric as well as in the non-axisymmetric cases there 
is a narrow band of a, which we will term the 'preferred band of a', where all the 
K,, coefficients are of the same negative sign. This preferred band scales with aR-?, 
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FIQURE 1 .  Domb-Sykes plots for a = 11.0, R = 6000, axisymmetric case. Solid line is for 

I K n l ’ K ( n - l ) l I  and broken line is for I Kni’K(n-p)i’ i .  Also p = n+ 1 ,  where 7~ is of the order of KnI. 

Best estimate of rc from above plots is rc = 0.0023. By (7 x 7)  Pad6 approximants, rc = 0.002314. 
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FIQURE 2. Domb-Sykes plots for a = 3.0, R = 5000, non-axisymmetric case. Solid line is for 

I Kni’K(n-l) I and broken line is for ‘ Kn1’K(n-2)i  ‘ I .  Also p = n+-l, where n is of the order of Kni .  
I KmlK,, I I Ko, /K,+  I . _.. -. . . __. -. . 

Best estimate of rc from above plots is rC = 0.001 54. By (4 x 4) Pad6 approximants, rc = 0.001 538. 
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and the bandwidth is obtained as 0.57 < aR-i < 0.64 for the axisymmetric case and 
0.15 < aR-! < 0.21 for the non-axisymmetric case. 

The fact that within the preferred band of a all the K,, have the same negative 
sign (depicting tendency of amplification by the higher-order terms) enables us to 
draw at  least one significant conclusion. That is, in this region there has to be a 
zero-crossing within the nearest singularity, if the nearest singularity is a simple pole. 
Thus the results qualitatively ensure the possibility of destabilization of the flow due 
to finite-amplitude effects. 

We again take a look at  tables 1 and 2, where K,, coefficients are also given for 
values of aR? lying just outside the extremities of the preferred band. It appears 
from these coefficients that there could be a variety of reasons for the destruction 
of the feature of uniform negative sign of the K,, coefficients. For instance, if the 
coefficients tend to change sign at higher orders it is possible that a weak secondary 
pole has moved inside the circle of convergence and thus become the primary 
singularity. Or, if periodic sign changes take place, then it is possible that a 
complex-conjugate secondary singularity has moved inside the circle of convergence 
and thus become the primary singularity. Or, it is also possible that a fresh but weak 
primary singularity has developed within the original circle of convergence. Whatever 
the nature or mechanism of the singularities, very detailed and critical analysis using 
both the Shanks (1955) method and Pad6 approximants (cf. Van Dyke 1974) showed 
that it is very difficult indeed to get any conclusive answers for the regions lying 
outside the preferred band. Thus, hereinafter, all the analysis presented, for both the 
axisymmetric and non-axisymmetric cases, will be restricted to the results within the 
preferred band only. Also, it is in view of this fact that the typical Domb-Sykes plots 
shown in figures 1 and 2 are for points well within the preferred band. 

Later analysis will show that, whilst on the one hand the K,, coefficients are of 
rather irregular magnitude, on the other hand (upon introducing scales given by 
Davey & Nguyen 1971) the K,, coefficients, a t  different sets of values of a and R, 
depict near-perfect scaling when the value of aR-t is the same. On this latter count, 
the analysis of results is to a large extent simplified. 

4.2. Determination of equilibrium amplitudes 
For reasons already mentioned, the attempts to determine the equilibrium amplitude 
were reasonably successful only for points within the preferred band wherein all the 
K,, are of the same negative sign. After inspection of the magnitudes of the K,, 
coefficients and of those of the (fictitious) equilibrium amplitudes A, based on the 
direct sum of the series up to K,, terms, it was concluded that the true equilibrium 
amplitude A, would lie very close to the radius of convergence. Thus, with a very 
poor rate of convergence of the series (7), for levels of amplitude of the same order 
as A,, it would be virtually impossible to obtain the true equilibrium amplitude A, 
without recourse to some procedure of accelerated convergence. However, one feature 
was guaranteed at the outset; that is, within the preferred band, A, would have to 
lie within the radius of convergence rC,  i.e. A, < rc ,  since all the K,, are of the same 
negative sign. Regarding the use of accelerated convergence techniques, two methods 
were tried, namely the Shanks (1955) method and the method of Pad6 approximants 
(cf. Van Dyke 1974). Results based on both are discussed next. 

For the axisymmetric case the Shanks method using the e y  transform did not yield 
sensible answers even with nine K,, coefficients. This is because the higher order e y  
transform columns showed no trend towards convergence for levels of I A 1 of the same 
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3 4 5 6 7 
( x 10-6) 

lA12 

RQWE 3. S/c, versus I A I* for a = 11.0, R = 6O00, axisymmetric case. P(m, m) represents curve 
baaed on (m x m) Pad6 approximants. SH( 14) represents curve based on Shanks method and DS( 14) 
represents curve based on direct sum of series, both using the first fourteen K,, coefficients. 

order as r,. Using fourteen coefficients, convergence of e y  transform columns was 
obtained and a prediction of the zero-crossing of the series (7) could be made. 
However, more critical inspection showed that the result for A, thus obtained was 
not entirely trustworthy. To understand this, we look at figure 3, where the 
normalized series (7) sum S/c, is plotted versus I A la. It is seen in this figure that the 
sum according to the Shanks method is greater than the direct sum of the series up 
to fourteen K,, coefficients, in a region where I A I is less than the value predicted 
as the zero-crossing by the Shanks method. Now, if the sum according to the Shanks 
method is the ‘true sum ’, then obviously in a region where I A I < r, this ‘true sum ’ 
must be less than the direct sum up to a finite number of terms, because all the K,, 
are of the same negative sign. Since the Shanks method gave the opposite result, it  
was concluded that the Shanks method was converging to the wrong answer. Shanks 
(1955) pointed out that this situation could arise if there is a double pole or two simple 
poles close to each other located on the real axis. We believe that the existence of 
a pair of complex-conjugate secondary singularities, lying outside the circle of 
convergence but with the real ordinate having a value less than re, is really the cause 
of the breakdown of the Shanks method, because the pair would simulate two 
singularities close to the real axis. Nevertheless, since it was found that the results 
obtained by the Shanks method are inconsistent and contradictory, the method was 
ultimately abandoned as being unsuitable for the problem in question. The e p  
transform was also tried, but that too did not yield satisfactory results. 

Next, for the axisymmetric case, Pad6 approximants were tried. Normalized sums 
for S/c,, calculated on the basis of Pad6 approximants, are plotted versus I A I2 in 
figure 3. The curves P(5 ,5 ) ,  P(6,6)  and P(7, 7), respectively based on (5 x 5 ) ,  (6 x 6) 
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and (7 x 7 )  Pad6 approximants, indicate a 15% scatter in the respective predicted 
values of A ,  and r,. This obviously calls for caution in the interpretation of results, 
especially considering Van Dyke’s (1974) warning that one must look for a good deal 
of internal consistency before accepting results based on Pad6 approximants or the 
Shanks method. We thus look for consistency, if any, in the results. Our starting point 
is the series (7)  itself, wherein we remember that all the Kni coefficients are of the 
same negative sign and the nearest singularity is a simple pole. As stated earlier, 
this guarantees a zero-crossing of the series (7) within the nearest singularity, so that 
A ,  < rc. The results by Pad6 approximants, a t  all orders, confirm this and show that 
the numerator and denominator zero-crossings of the approximants occur very close 
to  each other, with the former occurring for a value of I A l 2  slightly smaller than that 
for the latter. Incidentally, this feature is responsible for the sharp fall in the curves in 
figure 3. Moreover, the true series sum, as predicted by the approximants, iseverywhere 
less than the direct sum up to  a finite number (fourteen) of terms, and this result is 
consistent with the same negative sign of K,,. Also, the rc predicted by (7 x 7) Pad6 
approximants is in very good agreement with the rc predicted by Domb-Sykes plots 
as indicated in figure 1. Further, in figure 3 the P(7,7)  curve is bracketed between 
the P(5 ,5 )  and P(6 ,6 )  curves. Whereas the above arguments are indicative of a good 
measure of consistency in the results, these do not explain the scatter in the results 
obtained. To understand this scatter, we turn to the Domb-Sykes plots in figure 1, 
which show that there is a very large variation in the magnitudes of Kni,  with a 
periodicity of four. It is therefore reasonable to  expect that  in these circumstances 
some scatter will be obtained in the predicted values A ,  and r ,  a t  different orders 
of Pad6 approximants. Thus, after considering all points, the best estimate of the true 
value of A, that was used in the subsequent analysis was the one based on (7  x 7) 
Pad6 approximants. At the same time, owing to  the scatter in the results for A ,  and 
r,, the reader is advised to exercise caution on two counts before accepting the results, 
First, some small degree of reservation must be maintained regarding the convergence 
of the series (7),  a t  levels of 1 A I of the order of A,, despite the earlier mentioned 
powerful argument that A, must be less than rc.  Secondly, a greater degree of 
reservation must be maintained regarding the numerical value of A ,  based on (7 x 7 )  
Pa46 approximants, although this value has been stipulated as the best estimate of 
the true value of A, in the problem. 

We next turn our attention to the non-axisymmetric problem. For this problem 
the first eight K,, coefficients are available. To calculate still-higher-order K,, 
enormous volume of computation would have to  be done for every subsequent 
coefficient calculated. This is because of the many nonlinear terms on the right-hand 
sides of (26)-(28). This effort was not felt to  be worthwhile for the following reasons. 
First of all, figure 2 indicates that the Domb-Sykes plots amply reveal the trend of 
the series within the first eight K,,. Secondly, results by (4 x 4) Pad6 approximants 
give the value of rc in perfect agreement with that based on the Domb-Sykes plots. 
Thirdly, the Pad6 approximants results show that A ,  is very close to  rc,  but with 
A ,  < rc,  as is shown in figure 4, which accounts for the sudden drop in the SIC, versus 
I A 1 %  curve. Fourthly, the ‘true-sum’ curve is lower than the ‘direct-sum’ curve, 
which is consistent with all negative K,,. Thus it is believed that more or less all of 
the information that can be extracted from the series is revealed to  a reasonable 
extent within the first eight Kni. Incidentally, the Shanks method using the e y  
transform was also tried for this case. It was seen that the penultimate e y  column 
developed into an alternating series, near the zero-crossing of the series. To that 
extent, the method depicts a trend towards convergence, and i t  is believed that if 
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FIQURE 4. S/c ,  versus I A la for a = 3.0, R = 5000, non-axisymmetric case. P(4,4) represents 
curve based on (4 x 4) Pad6 approximants. DS(8) represents curve based on direct sum of series 
using the first eight K,, coefficients. 

more terms were used an actually convergent answer would be obtained for the 
zero-crossing. Nevertheless, the value of A, predicted by the Shanks method is in good 
agreement with.that by (4 x 4) Pad6 approximants, within the preferred band, even 
with the first eight Kni.  Thus in the subsequent analysis of the non-axisymmetric 
problem the value of A, used was based on (4 x 4) Pad6 approximants, and the degree 
of reservation on the accuracy of the numerical value of A, is certainly less than that 
for the axisymmetric case. For the latter, the series is much more irregular even up 
to the first fourteen Kni. 

As a final observation in this subsection, it may be mentioned that no satisfactory 
or trustworthy values of A, could be obtained for the regions lying outside the 
preferred band in either of the two cases. 

4.3. Consideration of scales 
The results obtained may be seen in fuller perspective upon considering the scales 
introduced by Davey & Nguyen (1971) and by Gill (in an appendix to Davey & 
Nguyen 1971). The most important result predicted by them was that R2E is a 
function of aR-4. Also the minimum value of E, viz Emin, is Emin - R-2, and R2Emi, 
is uniquely related to aR3.  The quantity E is the relative kinetic energy, and is defined 
as the ratio of the energy of the disturbances to that of the energy of the basic flow. 
The quantity was introduced by Davey & Nguyen (1971) and by Kuwabara (cited 
by Davey, private communication), and is given by 

r i  

E = 12 J ~ t ( ~ ’ ~  + d2 + w’2) r dr, 
0 

(54) 



308 P .  K .  Sen, D .  Venkateswarlu and S .  Maji 

where w‘ = 0 for the axisymmetric case. Now u’, v’ and w‘ can only be approximately 
evaluated as part of the present calculations. This is because the sums of various series 
like (8) and (24) would be needed to  evaluate the velocities. And, with a poor 
convergence rate, the sums would be extremely sensitive to even slight errors in the 
value of A,. Thus, a t  the expense of accuracy in favour of numerical stability, the 
velocities were approximately evaluated based on the fundamental only, and based 
on the calculated value of A,. The respective expressions for the velocities are as 
follows : 

axis ymmetric 

U’ = 4 2  Ae-  ‘ “ I ,  v’= 4 2  A ,u -  l @ l l  ..., . 
r r (55)  

mn-axis ymmetric 

u ‘ =  2/2A,If,l, w‘= 42A,Ig,I ,  w’= ~ 2 A e l h l l  .... (56) 

Using (55) and (56) ,  the working expressions for E are given for the axisymmetric 
and non-axisymmetric cases respectively as follows : 

We will now arrive at certain asymptotic estimates of various quantities based on 
the scales given by Davey & Nguyen (1971). According to  them, for the centre-mode 
in both the axisymmetric and non-axisymmetric cases, the scales for the radial 
distance r (up to the critical point) and the differential operator D (= d/dr) are 
respectively given as r h- (aR)-: and D h- (all):. We next recall the normalization of 
the eigenfunctions in the two problems. For the axisymmetric case this is $: = 2 at 
r = 0, and for the non-axisymmetric case it is g, = 1 a t  r = 0. Using the estimates 
of r and D and the normalizations adopted, scales may be deduced for any quantity 
in either of the two problems, for example $; h- (aR)-: and fi h- a<&. We will see 
subsequently that the use of these scales proves to  be a powerful method of analysis. 

To begin with we need to  check whether or not R2E actually is a function of aR-k 
Using (57) and (58), plots of R2E versus a R f  are shown respectively for the 
axisymmetric and non-axisymmetric cases in figures 5 and 6. The results are 
convincing enough, and very satisfactorily bear out the contentions of Davey & 
Nguyen (1971). However, the R2E curve for the non-axisymmetric case does not show 
a distinct minimum within the preferred band, and outside the preferred band results 
could not be predicted by the present calculations. Nevertheless, aR-4 = 0.2 was 
taken as the tentative-minimum point for the R2E curve in the non-axisymmetric 
case. For the axisymmetric case a distinct minimum is indicated for the R2E curve 
a t  aR-t = 0.605. This value is somewhat lower than that predicted by Davey & 
Nguyen (1971) based on A, = A,, i.e. based on the first Landau coefficient Kll. 
Moreover, the magnitudes of R2E are seen to  be very much lower than those predicted 
by Davey & Nguyen, for the obvious reason that their estimate of A,, based on A,, 
is very much larger than that  based on the present calculations. To examine this 
feature we take a look a t  table 3, which compares results at R = 500 with a = 6.2 
and a = 4.84. The former is Approximately the point of minimum A,( =A,) according 
to Davey & Nguyen. The latter is the point of minimum A, based on (7 x 7 )  Pad6 
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FIQU~E 6. Different forms of fluctuation-energy levels plotted versus aR* for the 
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FIGURE 7. Distributions of the root-mean-squared velocities and the disturbance kinetic energy k. 
(a) Axisymmetric case with u = 10.341, R = 5000, uRf = 0.605. ( b )  Non-axisymmetric c w  with 
a = 3.42, R = 5000, aR-k = 0.200. Both (a) and ( b )  correspond respectively to the minimum RzE 
points obtained in each case. 

approximants. We note further that aR-4 = 0.7812 for a = 6.2, which is well outside 
the preferred band. Further, (7 x 7)  Pad6 approximants yield no result for A, for this 
case. The comparative figures for A ,  are as follows. For a = 6.2, A ,  = A ,  = 0.05225, 
whereas for a = 4.84, A ,  = 0.01204 by (7 x 7) Pad6 approximants. This accounts for 
the large difference in the R2E values between the results of Davey & Nguyen and 
the present results. The comparison also illustrates that  i t  is not safe to arrive a t  a 
result for A, based on the first Landau coefficient alone. 

Returning to the question of scales, it can easily be shown that the most prominent 
contribution to E is made by the u ’ ~  term in (54), both in the axisymmetric and 
non-axisymmetric cases. Consequently R2E - A : a - : B  and R2E - AEa-2 R2 in the 
axisymmetric and non-axisymmetric cases respectively. Figures 5 and 6 show that 
these two estimates are also functions of aR-i, and the respective curves have the 
same shape as the respective R2E curves. These curves have also been used to 
illustrate the dispersion of data with differences in R ,  and it suffices to state that the 
larger the value of R the truer are the asymptotic estimates. 

and A: a-2 R2 are functions of a R f  in the two 
respective cases, it is obvious that the same quantities, multiplied by any multiple 
or power of aR-4, will also be functions of aR-i. On this basis it is easy to prove that 
A :  Rd, u ‘ ~  Rt,  d2 Rt, wr2 Ri and kRb will all be functions of crR-:, where k is the 
disturbance kinetic energy, 

Now, once it is seen that A: ad 

k = t ( ~ ’ ~  + d2 + wr2) ,  (59) 
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FIGURE 8. Variation of A:, uf, vf and k, with R for the axisymmetric cam at the minimum RaE 
point, i.e. with fixed aR-b = 0.605. Subscript m refers to the maximum value in the range 0 < r d 1.  
The asymptotic formulae are given as A E d  = 0.5789, uf l8 = 4.631. v z  d = 0.4180 and 
k,Rb = 2.3155. 

and w' = 0 for the axisymmetric case. Thus a plot of A: R! versus aR-i is apparently 
the best way of depicting the equilibrium amplitude A,, and these plots are also shown 
in figures 5 and 6. 

We next take a look a t  plots of the disturbance velocity distributions shown in 
figure 7. These correspond to  the minimum R2E points in the axisymmetric and 
non-axisymmetric cases. The velocity fluctuations and k are calculated based on (55), 
(56) and (59). A remarkable result obtained is that  the u ' ~  fluctuation and k in the 
two cases are comparable, which would mean that both the axisymmetric and 
non-axisymmetric modes are equally likely to cause finite-amplitude destabilization. 

Next a t  different values of R, but corresponding to aR-4 = 0.605 for the axi- 
symmetric case, and aR-i = 0.200 for the non-axisymmetric case (both being the 
respective minimum R2E points), the different velocity fluctuations and k were 
calculated. Thereafter the respective maxima of these quantities in the range 
0 < r < 1 were found and plotted versus R. These quantities are indicated by the 
subscript m, and plots for them are shown in figures 8 and 9. The values of these 
quantities at R = 4000 provide the following set of asymptotic formulae: 

axis ymmetric 

A: Rt = 0.5789, UZ Rt = 4.631, V: Rt = 0.4180, k, Rt = 2.3155; (60) 
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FIQURE 9. Variation of A:, uf, vf,  w$ and k, with R for the non-axisymmetric case at the 
(tentative) minimum ROE point, i.e. with fixed aR4 = 0.200. Subscript m refers to the maximum 
value in the range 0 < r < 1.  The asymptotic formulae are given as A: & = 0.2536, uf Rt = 3.401, 
vf = 0.5073, wf = 0.9214 and km18 = 2.2213. 

rum-axis ymmetric 

(61) 
A: Ri = 0.2536, U: Rt = 3.401, V: Ri = 0.5073, 

w: Ri = 0.9214, k, Rj = 2.2213. 

The above formulae and the curves shown in figures 8 and 9 provide a rational 
estimate of the size of disturbances at minimum threshold of destabilization. 
Incidentally, the plots in figures 8 and 9 are very close to what would be given by 
the asymptotic formulae respectively in (60) and (61). Also, as mentioned before, the 
formulae for k, in (60) and (61) confirm that both are of virtually the same magnitude 
in the axisymmetric and non-axisymmetric cases. 

The R2Emi, value has a different story to tell. For the axisymmetric case 
R2Emi, = 31, and for the non-axisymmetric case R2Emi, = 155. This is so because 
(54) can be rewritten as 

(62) 
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Axisymmetric case Non-axisymmetric case 
a = 4.80, R = 500, a€?+ = 0.6048, 

C, = 0.94226, ci = -0.067335, 
A, = 0.012021, C; = -0.067336 

a = 1.75, R = 1O00, aR-i = 0.1750, 
C, = 0.88486, ci = -0.052265, 

A, = 0.0044930, C; = -0.052344 

n Kni Kbi Kni K i t  
1 -2.2296 x 10 -2.2293 x 10 -3.0063 x 10 -3.0092 x 10 
2 - 1.1274 x l @  - i . 1190~105  -7.1931 x l o5  -6.9135 x 10' 
3 - 1.9148 x 108 - 1.8275 x 10' -4.5301 x 10" -4.3800 x 10'' 

- 1.3780 x 10'' 
5 - 1.0634 x 1 0 1 6  - 1.0600 x 10" -7.0981 x l O l 0  -6.7855 x 10'" 

7 -2.0685 x loz3 - 1.8662 x loz3 - 1.7010 x - 1.6293 x loz9 

4 -4.4560 x 10" -4.2703 x 10" - 1.4423 x 1015 

6 -7.7986 x 10''' -7.5769 x lO'O -3.4127 x loz4 -3.2636 x loz4 

8 -1.0181 x loz7 -0.9618 x loz7 -8.3879 x -8.0515 x 
9 - 1.7533 x 1031 - 1.7194 x los1 

10 - 1.2279 x -1.1541 x 

12 -3.5770 x loo2 -3.3732 x 
13 -4.0146 x lop8 -3.8198 x 
14 -2.2762 x lo5' -2.0249 x lo5' 

11 -4.4661 x - 3.9070 x 1038 

TABLE 4. Illustration of the scaling of c, and K,, coefficients. c; and K i t  are the scaled values of 
ci and Kni as obtained respectively from those at ( i )  a = 9.6 and R = 4000 (given in table 1 for 
the axisymmetric case), and (ii) a = 3.0 and R = 5oOO (given in table 2 for the non-axisymmetric 
case). Values of a R f ,  for the respective pair of points compared, are very nearly the same. The 
asymptotic estimates are ci N (aR)-k and K,,  - (aR) f  (18)n, and at the same value of aR-5 the 
proportionality constants are very nearly equal. 

and, as may be seen from figures 7(a,b) ,  the maxima of k occurs off the centreline 
for the non-axisymmetric case. Thus this is tantamount to a larger global volume 
of energy for the non-axisymmetric mode. On this last basis, i t  would appear that 
perhaps axisymmetric disturbances are more dangerous than non-axisymmetric ones, 
because, all other things being equal, the global volume of disturbance energy 
required for destabilization at minimum thresholds is five times less in the axisym- 
metric case than in the non-axisymmetric case. This result is just the opposite to what 
is predicted by the linear theory. 

The last but not the least thing that we would like to discuss is the matter of the 
scales for ci and Kni. According to Salwen & Grosch (1972), an asymptotic estimate 
of c( = c, + ic,) is 

with A, and B, being different (approximate) constants in the axisymmetric and 
non-axisymmetric casea. We found that B, was not quite a constant but actually 
almost an exact function of aR-4. Thus the estimate for ci is ci - (aR)-:, with the 
proportionality constant being the same at the same value of aR-f. Moreover, i t  can 
be shown that the asymptotic behaviour of K,, should be like Kni - c ~ ( B : ) ~  or 
K,, - (aR)-t (@),, with the proportionality constant being the same a t  the same 
value of aR-f. This indeed proves to be a remarkable result, because i t  enables one 
to predict the values of K,, from one value of R to another, at the same value of 
aR-4. Typical comparisons are shown in table 4, for both the axisymmetric and 
non-axisymmetric cases. The points considered in table 4 are within the preferred 
band, but we actually compared many points outside the preferred band as well, in 
both the cases. The results showed that not only were magnitudes comparable, but 
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also sign changes were faithfully reproduced at the same value of aR-4. This leads 
us to two more important conclusions. First, the preferred band itself scales with aR-:. 
Secondly, if detailed study of the problems is made at  a particular value of R,  and 
for various different values of a, then the results are more or less known at all other 
values of R, to a very fair degree of detail, based on similarity with respect to aR-4. 
In other words, the results are similar with respect to aR-4, and this is a feature that 
future workers employing other methods could capitalize upon. The results thus do 
credit to Davey & Nguyen’s (1971) and Gill’s estimate of scales. 

As a final remark, we may mention that i t  would be worthwhile to have the present 
results checked by other methods, like Herbert’s (1977) iterative method or Zhou’s 
(1982) method. We do not anticipate that either of the exercises will be easy, because 
the ill-conditioning of the higher-harmonic equations will cause problems in either 
of these methods. 

It has been mentioned earlier that opposite signs for the first Landau coefficient were 
obtained respectively by Davey & Nguyen (1971) and by Itoh (1977a,b) for the 
centre-mode axisymmetric disturbances. Later Davey (1978) correctly, in our 
opinion, attributed this discrepancy to the fact that the Stuart-Landau series was 
being used close to the radius of convergence in both of the two formulations. This 
fact has actually been borne out by our results, as discussed earlier. With the series 
being used close to the radius of convergence, it would be misleading to draw 
conclusions regarding nonlinear stability based on the first Landau coefficient alone. 

Otherwise, i t  also appears to us that the R P  theory and Itoh’s theory strictly 
speaking do not admit of a ready comparison, except in certain broad points as 
described by Davey (1978). Itoh’s theory is non-monochromatic in the sense that free 
modes are allowed to exist not only for the fundamental but also for the mean motion 
and second harmonic. The RP theory, on the other hand, is monochromatic in the 
sense that, except for the fundamental, no free modes are allowed to exist for the 
harmonics or the mean motion, which are purely forced solutions. Secondly, Itoh’s 
theory is valid within the ambit of the assumed order of magnitude scheme, viz O(a) 
for the fundamental and O($)  for the free modes of the mean motion and second 
harmonic. In fact his conclusions might have been different had he assumed the 
second-harmonic free mode to be O(s) ,  a possibility that he himself mentions (Itoh 
1977a, p. 466). 

Moreover, Itoh’s theory is asymptotic in E + O ,  which means that the theory is meant 
to predict (within the ambit of the assumed order-of-magnitude scheme) whether the 
nonlinear terms are stabilizing or destabilizing for arbitrary though small values of 
s in the limit E + O .  Also, Itoh’s theory is unable to describe the equilibrium state of 
the fundamental, whereas the RP theory, by its very nature, is valid only at the 
equilibrium state, i.e. for the particular value of A = A,. Thus it is clear that the 
purposes and extent of the two theories are different, and strictly speaking each 
theory is valid within its own ambit of assumptions. Nevertheless, there is some merit 
in the broad comparisons made by Davey (1978) regarding the two theories, but we 
find it difficult to accept Itoh’s (1977 b, p. 479) statement that the RP method is “not 
applicable to the problem of pipe-Poiseuille flow”. At  least this contention is not 
borne out by our present advanced calculations based on the R P  method. 

4.4. Some discussion on earlier work 

We are grateful to Professor J. T. Stuart of Imperial College, London, for his 
suggestions and encouragement. Referees have give valuable advice which helped in 
revising an earlier draft. 
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